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Containing Transversely Magnetized
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Abstract—The boundary value problem of rectangular wave-
guide, filled with transversely magnetized semiconductor or plasma,
is solved by a perturbation method reported earlier [1]. The solution
by first~order theory is compared to the results of an experiment in
which surface currents in the guide wall due to perturbed and un-
perturbed TE,,, wave in N-type Silicon are sampled and segregated.
Theoretical and experimental results are in excellent agreement.

INTRODUCTION

ECENTLY we reported a general perturbation
R method for the analysis of waveguides containing
anisotropic, inhomogeneous, dissipative media
[1]. In the present work, we apply the method to
rectangular waveguides filled with a gas plasma or semi-
conductor in a transverse magnetic field. For the pur-
pose of demonstrating the accuracy of the first-order
perturbation theory, the theoretical results are com-
pared to the results of an experiment employing a
semiconductor.

At microwave frequencies, as it is well known [2],
plasmas and semiconductors in a magnetostatic field are
characterized by a tensor permittivity and a tensor con-
ductivity, respectively. The semiconductor is regarded
as the solid-state counterpart of the gas plasma, since
the conductivity can be considered as part of a complex
permittivity tensor. Thus, the analyses of problems in-
volving the two media are identical. We have confined
the analytical development to semiconductors, since in
the experimental verification it was more convenient to
use a semiconductor than a gas plasma. The theoretical
results and conclusions are applicable to both media.

Although the problem under consideration is pre-
sented principally as an example of a method of approxi-
mation [1], this problem has considerable practical in-
terest. Application of a transverse magnetostatic field
leads to electrically controllable phase shift and attenu-
ation. Measured values of the propagation constant can
also be used to determine the transport parameters, m*,
i, and 7, of an unknown semiconductor. Thus, the
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approximate solution can be used for studying the
feasibility of components and as an aid in investigating
new diagnostic methods. From the latter viewpoint, the
perturbation analysis is particularly advantageous, since
it yields much simpler results than the exact solution,
which requires all six E- and H-field components of the
wave and their dependence on both coordinates in the
transverse plane [3]. This is unlike the ferrite where
many of the effects can be adequately explained by con-
sideration of the restricted TE, , solutions [4], [5].

ThedominantTE omode of the empty guide is usually
of greatest interest in practice. The general solution does
not provide simply and explicitly the connection be-
tween the characteristic waves of the anisotropic plasma
or semiconductor and the TE;, mode of the empty
guide. It is with the perturbation method that this con-
nection is established quantitatively. Even for the
higher order modes, the expressions of the general solu-
tion are too complicated for numerical calculation in a
practical situation.

We shall first briefly review the salient steps of our
previous development [1]. The perturbation expressions
are then derived for rectangular waveguide completely
filled with a semiconductor. In the experiment, the sur-
face currents in the guide walls under TE;  excitation
provide the quantitative observable which permits sepa-
ration of the perturbed and unperturbed parts of the
fields. Thus, the analysis ends with an expression for
these currents. This is then followed by a description of
the experimental scheme which, in addition to providing
verification for the theory, is also another method for
determining the Hall mobility of semiconductors.

PERTURBATION THEORY

Only first-order nondegenerate perturbation is con-
sidered, the extension to higher order ones being similar
in method. We shall assume all field quantities to have
the dependence exp 7(xz—wt). Consider the rectangular
waveguide completely filled with a semiconductor in a
transverse static magnetic field, as in Fig. 1. In the
absence of the magnetic field, the characteristic waves
are the usual TE and TM modes. Our objective is to
establish an analytic connection between the character-
istic waves in the presence and absence of the perturbing
magnetic field. This connection will appear as additive
terms on the unperturbed TE and TM modes.

In the formalism of previous work [1], [6], the ath
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characteristic wave is specified by the six-vector wave

function
T 1H, )

where E, and H, are the microwave electric and mag-
netic vectors. In this six-vector formalism, the Maxwell
Equations appear as

(& — kB, = 0 (2)
where
L = ego + L
[ weod -V, X I}
Lo =
—V: >< I w/.tuI
0 XTI
r=|. . )
12X 1 0

The symbols V,, I, and § are, respectively, the trans-
verse del operator, the identity dvadic, and the unit
vector along the z-axis. The operator L is the pertur-
bation operator which embodies the anisotropy and in

general is
Wep X ¢ 0
S
0 WO X

where x. and x,, are the electric and magnetic suscepti-
bility dyadics (tensors). In the case of the semiconduc-
tor, x. is zero as the permeability is assumed to be that
of vacuum. The permittivity € is complex and it ac-
counts for displacement as well as conduction currents.

Since the anisotropy is induced by the magnetic field,
we use the field intensity as the perturbation parameter
[1] and designate it by the dimensionless variable ..
Thus, we expand

I = Z yrL ™ (5)
n=1
6
b, = [d)“(o) + E Vcn@a(7”J elkaz ( )
n=1
Ko = Kao T D Ve'Kan (7
n=1

where k.0 and ®,'” are, respectively, the zero-order
eigenvalues (wave numbers) and eigenvectors (modes)
of £, in the absence of the magnetic field, and k., and
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Fig. 1. Rectangular waveguide with trans-

verse static magnetic field B.

®, are the nth order perturbations. Qur task is to
determine ®, and k., which satisfy the recurrence
equations,

If

0

— (LD — () B, ©

—_ (L(I) — Kal]“)q)a(l)

— (L — kD)@, (8)

(DCO - Kaﬂr)q}a(u)
(ﬂeo - K(IUF)¢Q(1) =
(£o t Kaur)q)am) =

We observe that by virtue of the linear independence of
v, all the ®, satisfy the same boundary conditions as
®, and hence they belong in the domain of £, Conse-
quently, every ®," may be represented in a series of the
spectral functions of L.

The first-order field is then given by

> (@n®s® — a_g®_p ) 9)
8

&, =

where ®_49 =0 (—y350). Both sets of functions for +f
must be included, since + kg0 are both eigenvalues of £q.
The coefficients a1 and the first- and second-order
perturbations of the eigenvalues are determined by the
methods outlined in [1]. Using the notation
a
Lo = (@0 | L@,
where the symmetric scalar product is defined by the
integral over the cross section of the guide,

(Bs] ) = f (Es-E. + iHg-iH,)da,

we have
(1)
¥8,a
aypr = PR (10)
Ko0 + Kgu
(1 ]
Kal — L~a,a (ll)
(1) @ (1
. Logal ag Lyalees (12
Kaz = L a0 + Z/ T - = ( )
8 Kab — Kgo 8 Ku0 + K30

The prime on the summation denotes exclusion of the
term B=«. For a given zero-order wave, these quantities
can be calculated once the dyadic coefficients L™ have
been determined. We shall identify L™ for the semi-
conductor by considering the conductivity tensor.!

1 For convenience we use dyadic and matrix representations inter-
changeably.
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The Conductivity Tensor

With the magnetic field oriented along the x-axis, the
semiconductor is described by the tensor'

ag 0 0
g =10 o111 —019 (13)
O aig g22

where ¢ is the high-frequency conductivity in the ab-
sence of the magnetic field. We assume the field to be
parallel to the {111) or {100) crystallographic axes so
that ¢12 and oy are equal. It is further assumed that the
diagonal element oy, is an even function of the static
magnetic field and the off-diagonal element oy, is an odd
function.

To fit the formalism of the theory, the conductivity
needs to be viewed as part of a complex dyadic permit-
tivity. Hence, we define

i
£ = E()I + — (6 —_ o’oI) (14)
w
where e;=¢,4-(i/w)ao is the high-frequency scalar per-
mittivity in the absence of the magnetic field, and ¢, is
the static permittivity of the host crystal which does not
include any polarization contribution from the carriers.

The dyadic (tensor) permittivity is now in the de-
sired form. The first term in (14) is the isotropic part and
the second term accounts for the anisotropy induced by
the magnetic field. Thus, we identify L by comparison

to (4),
":6— ool O:I
L =1 .
0 0

To obtain the dyadic coefficients L™, we expand ¢—ayI
about v, =0, it being understood that ¢ is a known func-
tion of the magnetic field. Since ¢1; and o2 are even and
odd functions of »., we have

(15)

6 — ool = afin)vfﬂls -+ Ui;n_l)vfnﬁlfa (16)
n=1
where I, and I, are the special 3 by 3 matrices
0 0 0 0O 0 0
I.=10 1 0 I,=]10 0 —1
0 0 1 0 1 0
Comparison of (15) and (16) with (5) shows that
I, O
LY = wié)[ ] an
0 O
oI, 0
L® - 1,0;1)|: ] (18)
0 0

with similar expressions for the higher order coefficients.
Thus, for the semiconductor,
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Lipa = iy f Eag I, B da. (19)
Expression (19), together with (10), shows that the
first-order perturbation of the fields is dependent on the
off-diagonal element of the conductivity tensor. It is
also worth noting that thus far it has not been necessary
to adopt a particular relationship between the conduc-
tivity elements and the transport parameters. The form
of the elements depends on the particular model adopted
for the description of carrier diffusion within the crystal
or plasma. We shall use the Drude-Zener model when
we correlate the experimental and theoretical results.

Excitation with TE, . Modes

We consider now the case of propagation of the TE, 4
mode whose electric vector is parallel to the y-axis. It
must be emphasized that the preceding development is
not applicable to the TE, , modes, since these are de-
generate with the TM, , modes and require treatment
by degenerate perturbation theory [7]. Only one mode
(p, 0) is assumed to be propagating, and we wish to
determine the first-order perturbation of this wave. For
convenience of notation, we use the indexes a= (p, 0)
and 8= (m, n).

For the TE, modes, the axial component EY is
identically zero; and since E(f)ﬁzz ——Eg?, then LS?L in (19)
reduces to

Liga= -+ icig f Es EY da. (20)
It is evident that only the TM;, functions are significant
in the first-order perturbation of TE, ( mode. Moreover,
for the TE,,, modes, whose electric vectors are parallel
to the x-axis and the static field, LY, vanishes and
there is no perturbation.

The TM; spectral functions are derived from the
normalized scalar functions [8],

1 . mw | onw
Y = ['—fweo:cﬁokﬁxoyo]‘l” sin —— % sin — v,
Xo Yo

1)

where the normalization condition is

(0)
(@-g

mm\* nr\?
o ()
Xo Yo
In terms of these functions, the first-order field may be
expressed now in component form by substitution of
(20) and (10) into (9) and utilization of the “reflection

svmmetry” property of the spectral functions. The de-
sired result is

| Tag ) = 1

and



1966

L ZE
Wa) 7
ox

) (0 Ko —
f Eg. Eoy da dy
——— Kgo
Kao? — Kﬁo

(1> RS
q) —— 1019 2 z

(22)

In this sum only the terms 8= (1, 2m 1) are nonvanish-
ing. The complete arth quasi-mode, to first-order approxi-
mation, is then given by

BV = [$,© 4 y, B, 1) ]erw0, (23)

Here, we have used the fact that k.1, the first-order per-
turbation of the wave number, vanishes for all the
TE, » modes, This may be readily shown f{rom (19).
The second-order perturbation may be calculated from
(12). For the TE, y mode, it is

W (2)

Yo (1),2
@) e
2Kao 260/(0,0[ 12 [UI J

(24)

Kag = —— 011 -+

Wall Current for TE1,0 Mode

In the experiment to be described in the following
section, the surface currents in the guide walls were
utilized as the quantitative measure of the perturbed
fields. The axial component of the current density is
equal to the x component of the magnetic intensity at
the wall. Thus, from (22), the magnetic intensity com-
ponent is, for = (1, 0),

0y ., (0)
Eﬂz an da
J "
—— Kgg — -
— Kgo® 9y

e¥ W
Vellaw = — 2veoie wey

25
R (25)

The exact evaluation of this integral and sum (Appen-
dix, Section A) leads to

(1) m T . T
Vel oy = — a1,0i0pw.o1s — (y — %y) sin —x
Xo Xo

(26)

where a0 is the arbitrary amplitude of the initial
TE,,, wave. Thus, in the broad walls vy = (0, y,), the first-
order perturbation of the axial current density is

wm 1 o ™
= —4a, olw,U,()VccT]g Yo — sin — x.
2 Xo Xo

(27

Ved az

For measurement purposes, the ratio of this current to
the unperturbed current J is more desirable, since it
is independent of the amplitude. This ratio is given by
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Yooiz Ve.
J® 2K1,0
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(28)

It is this ratio that is observed in the experiment. Nu-
merical values for N-type Silicon at room temperature
are computed in the Appendix, Section B.

ExPERIMENTAL METHOD AND RESULTS

The purpose of the experiment is to determine the
range of validity of the first-order perturbation theory
of the preceding sections. The theory of measurement
is considered first, followed by presentation and dis-
cussion of the results.

The measurement of the wall current ratio is accom-
plished by observing the amplitudes of the fields coupled
into auxiliary waveguides through slits. A narrow slit,
Fig. 2, is cut in both of the broad walls of the waveguide
containing the semiconductor such that they lie in the
same transverse plane and are perpendicular to the axis
of the guide. Each slit couples the waveguide to a
secondary one, the entire configuration forming a four-
port E-plane junction.

Let J® and J® be the surface currents due to the
TE;:,0 mode and TM; .1 spectral functions, respec-
tively. Since the TE; , currents in the two slits are out
of phase by 180 degrees and the TMi s, 1 currents are
in phase, the wave amplitudes coupled into one arm of
the junction, say arm 4, is

Q1= CUM 4+ J®)

I

(29)
and in arm B is

CIW — Jw) (30)

I

On

where Cis a coupling coefficient. By forming the phasor
sum and difference of these two signals, the current am-
plitudes are separated. A microwave bridge is employed
to perform this operation. The two side arms of the slit
coupled junction feed into arms 1 and 2 of the matched
hybrid junction via adjustable attenuators and phase
shifters as shown in Fig. 3.

In the absence of the static magnetic field, only the
TE1,, mode is present in the semiconductor, so that

Q/l = — Qg = C](O).

The phase shifter and attenuators are adjusted for a
null in the H-port of the first bridge. The output in the
E-port of that bridge is then 2CJ. Some adjustment of
the attenuators is necessary because perfect symmetry
of the four-arm junction is not possible practically.

When the magnetic field is applied, the current due
to the TM 5,41 spectral functions appears and the sig-
nals are then as in (29) and (30). Since the bridge is
adjusted for the sum of Q4 and Qp in the H-port, the
output in this arm is

Qa4+ Qp = 2CT D,
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and in the E-portitis
Q4 — QO = 20T,

Measurement of the absolute values of the coupled
power is cumbersome, since it requires a determination
of the slit coupling coefficient. Moreover, because of
magnetoresistance, the effects are obscured since the
amplitudes J©@ with and without the magnetic field are
different. The ratio of J® to J©, however, is inde-
pendent of both the coupling coefficient and the ampli-
tude of J®,

The ratio is measured by means of a second bridge.
The signals Qu+Qz and Q4—Qp are fed into arms 1’
and 2’, respectively, of a second matched hybrid junc-
tion. In the branch carrying Q4 — Qp, an adjustable pre-
cision attenuator is interposed, while in the branch
with Q4+ Qp, a phase shifter is inserted. The E arm of
the second junction leads to the null detector, and the
H’ arm is terminated in a matched load.

Let R be the multiplicative factor by which the pre-
cision attenuator reduces the signal amplitude. Then the
detector, being in the E’ arm, picks up the signal

Op = 2RCJ©® — 2CTJ W,

When the phase shifter and the precision attenuator are
so adjusted that the signals arriving at the junction are
of equal amplitude and phase, Qp vanishes. Hence, we
have the condition

R:

] Jw

F©

Fig. 2. The slit-coupled four-port E-plane junction.

RECEIVER
Q

F i
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.

Fig. 3. A schematic diagram of the double
bridge method of measurement.
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Thus, the attenuator readings give the desired current
ratio.

Experimental Results

The current ratio was observedi n 11.1 ohm-cm and
3.1 ohm-cm N-type Silicon which completely filled a
section of standard K-band waveguide. The operating
frequency was 22.235 Ge¢/s and the temperature 32°C.
The measured wall current ratio as a function of the
applied magnetic field is shown in Fig. 4 for a range zero
to 10 kilogauss. The spread in the data for the 3.1 ohm-
cm is due to reduced power level resulting from extreme
attenuation. It is seen that the data fit remarkably well
on straight lines whose slopes are computed from the
Drude-Zener model in the Appendix, Section B. The
linearity of the data and the close fit to the theoretical
slopes of the lines demonstrate the excellent accuracy
of the first-order perturbation method in the low mag-
netic field region.

Because of severe discontinuity at the semiconductor-
air interface, the perturbation theory of the infinitely
long waveguide leads to a discrepancy in regions near
the interface. This discrepancy disappears at distances,
defined in Fig. 4, which are greater than two guide wave-
lengths in the semiconductor. The observed current
ratio increases with s and asymptotically approaches the
theoretical values.

TI! | T ll‘[ll F1

/

©3.1 ohm-cm N-Si
— ®ll.1 ohm-cm N-Si -
0.4 _
VL7772 /§/
s ] S
02 4 o
5 7
- - ]
A\
S o
o
o I ]
5 /
< -02 >
- F/
=2 p—
w
& j/
[
= 0.4
©
-0.6 e
-OBL L ' Ll ! ] Ll L

-0 -8 -6 -4 -2 (o] 2 4 6 8 0
MAGNETIC FLUX DENSITY - KILOGAUSS

Fig. 4. TE-TM current ratio as function of the magnetic field in
N-type Silicon at 32°C, s=7.0 mm, B along (111) axis.
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CONCLUSION

The perturbation method and equivalent variational
forms [1] appear to be the only comparatively simple
and accurate methods for analysis of transversely mag-
netized plasma and semiconductor in rectangular wave-
guide. The first-order perturbation approximation was
shown to be in excellent agreement with experimental
results. The experimental scheme also provides another
method for measurement of the Hall mobility at room
temperature and low magnetic intensity.

It must be emphasized that the perturbation equa-
tions are valid for all cylindrical waveguides containing
plasma or semiconductor, without regard to direction
of magnetization, provided the material properties are
independent of the axial coordinate. The method can be
used as long as the series (5) for the operator L is avail-
able. Accuracy of the results and rapidity of convergence
of the perturbation terms can be assured by simply
maintaining the physical parameter v, within prescribed
bounds.

APPENDIX
A. Evaluation of the Sum (25)
The TMjg spectral functions are defined by

gy = [LX T X 0]

weUV X éxbﬁ
where
. ommw | arw
Ys = ggsin—— g Sin — y
Xo Yo
as = [—Fweorgoks®royo] '
Kﬂo2 = w2u060 - kﬁﬂ.

The TE, field, &= (1, 0), is defined by

0) 2 T
Hy. = ay1,0k1,0c08—x
Yo
0) . T T
Haz = — 1Ki1,0¢1,0 — SIn — &
Xo Xo
,(0) . (O
Eoy = lwupay,o— SID — &,
Xo Xo
Thus
© _
f Eg: Exyda

- 2 w
= iwpoa1,0agkp® —
Ko

W gy ommx | nwy
X sin — sin sin —= dady
0 0 Xo x5 Yo
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, Yo
= dwpoar,eghs? 1 — (=1)7]; B = (1, n).
2n
Substitution of this integral in (25) gives
. (1) T, 7Y wr
Hii)vg = 4zw;uoal,(,¢71; pe~— sin ~— AN cos — ¥y

Xo X0 n=1,3,--- na? Yo

It can be shown that the last sum is

Yo 1 nr
1y — 3y0) = - 2. —, cos—y.

T n=1,3, -+ n? Vo
The ratio of He Wy, to H,,(® gives (28).

B. Numerical Values for the Current Ratio

Using the semiclassical Drude-Zener Model [9], one
can show that

1 — twr
11 = Ode N
(1 — fwr)? + uy?B?
uB
712

= Ode
(1 — fwr)? + uy’B?

where ug is the Hall Mobility, B is the static magnetic
induction, 7 is the energy-independent collision time,
and o4, = e’ n/m* is the dc conductivity. In the absence
of magnetic field, oy, vanishes and ¢;; reduces to the
high-frequency conductivity,

Tde

ge —

1 — dwr
Consider the element 12 which may be put in the form

[ ,UIIB
g12 = -

1 — jwr wugB T?
1+[~——
1 — fwr

This can be expanded as

o (uaB)?
0122—”0—_|}UJB—*—A_ +:|
1 — dwr (1 — dwr)?
If we take v, =ugB, we have
(1) oo
g1 = N
1 — twr

Thus, the current ratio in (28) becomes

(1)

veS Whoo Yo
= == ; /.LHB .
J 2k1,0(1 — dwr)
oz
In particular, at room temperature where wr<1, we
have
WUOT dcYo
R = ———;.LHB .
2K1,0
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This expression is used to calculate the ratio for
N-type silicon with resistivities 11.1 ohm-cm and 3.1
ohm-cm. In computing ||, it is recalled that ¢, was de-
fined by

.0-0
€0=€S+1—
[¢Y)

where €,=¢,¢, and ¢, is the permittivity of vacuum. At
room temperature o, reduces to og.. Thus,

k2 = wuoes — A2

leads to

2w
[ = = = Qo2 + [oao/we 2] e

¢

where 21 /Ao = w/ue€; and A, =27 /k.

The following numerical values were used in the

calculation:
& =12 f = 22235 Ge/s
vr = 1450 cm?/volt-s Ao = 0.388 cm
B = 10 kilogauss A, = 2.14 cm
o = 0.43 cm.
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The resulting values for the ratio are
R = 0.288
R =0.709

for 11.1 ohm-cm

for 3.1 ochm-cm.

Calculations on the basis of a model using the Boltzmann
transport equation [10] lead to results which are smaller
than the above values by a factor of 0.88 or 1.1 dB.
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Log-Periodic Transmission Line Circuits—Part I:
One-Port Circuits

R. H. DuHAMEL, rELLOW, IEEE, AND M. E. ARMSTRONG, MEMBER, IEEE

Abstract=A theoretical study of one-port log-periodic circuits
consisting of a transmission line shunt loaded with open-circuit
transmission lines is reported. The objective was to determine the
conditions under which the phase of the input reflection coefficient
varies linearly with the logarithm of the frequency. Precise definitions
and general analytical techniques for log-periodic circuits are given.
Results of extensive numerical calculations are presented to illus~
trate the dependence of the input reflection coefficient on the various
design parameters. It was found that phase deviations from linear
on the order of one degree are quite easily achieved.
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I. INTRODUCTION

HE OBJECTIVES here are to introduce and ex-

l plain new concepts for transmission line circuits
which are constructed according to log-periodic
design principles. As with the corresponding log-
periodic antennas, these circuits provide essentially
frequency-independent performance over any desired
finite bandwidth. Figure 1 illustrates strip line versions
of the four types of circuits to be discussed. The lines in
the drawings represent strips which may be inserted
between parallel ground planes. The one-port circuit of
Fig. 1(a), which is the subject of this report, can be de-
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