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Perturbation Analysis of Rectangular Wweguide

Containing Transversely Magnetized

Semiconductor

G. ~. GABRIEL AND M. E. BRODWIN, MEiWBER7 IEEE

AZr.stracf-The boundary value problem of rectangular wave-

guide, filled with transversely magnetized semiconductor or plasma,

is solved by a perturbation method reported earlier [1]. The solution

by first-order theory is compared to the results of an experiment in

which surface currents in the guide wall due to perturbed and un-

perturbed TEI,o wave in N-type Silicon are sampled and segregated.

Theoretical and experimental results are in excellent agreement.

INTRODUCTION

ECENTLY we reported a general perturbation

R
method for the analysis of waveguides containing

anisotropic, inhomogeneous, dissipative media

[1]. In the present work, we apply the method to

rectangular waveguides filled with a gas plasma or semi-

conductor in a transverse magnetic field. For the pur-

pose of demonstrating the accuracy of the first-order

perturbation theory, the theoretical results are com-

pared to the results of an experiment employing a

semiconductor.

At microwave frequencies, as it is well known [2],

plasmas and semiconductors in a magnetostatic field are

characterized by a tensor permittivity and a tensor con-

ductivity, respectively. The semiconductor is regarded

as the solid-state counterpart of the gas plasma, since

the conductivity can be considered as part of a complex

permittivity tensor. Thus, the analyses of problems in-

volving the two media are identical. We have confined

the analytical development to semiconductors, since in

the experimental verification it was more convenient to

use a semiconductor than a gas plasma. The theoretical

results and conclusions are applicable to both media.

Although the problem under consideration is pre-

sented principally as an example of a method of approxi-

mation [1], this problem has considerable practical in-

terest. Application of a transverse magnetostatic field

leads to electrically controllable phase shift and attenu-

ation. Measured values of the propagation constant can

also be used to determine the transport parameters, m*,

p, and r, of an unknown semiconductor. Thus, the
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approximate solution can be used for studying the

feasibility of components and as an aid in investigating

new- diagnostic methods. From the latter viewpoint, the

perturbation analysis is particularly advantageous, since

it yields much simpler results than the exact solution,

w-hich requires all six E- and H-field components of the

~~ave and their dependence on both coordinates in the

transverse plane [3]. This is unlike the ferrite where

many of the effects can be adequately explained by con-

sideration of the restricted TEo,n solutions [4], [5].

The dominantTEl,o mode of the empty guide is usually

of greatest interest in practice. The general solution does

not provide simply and explicitly the connection be-

tween the characteristic waves of the anisotropic plasma

or semiconductor and the TE1, O mode of the empty

guide. It is with the perturbation method that this con-

nection is established quantitatively. Even for the

higher order modes, the expressions of the general solu-

tion are too complicated for numerical calculation in a

practical situation.

We shall first briefly review the salient steps of our

previous development [1]. The perturbation expressions

are then derived for rectangular waveguide completely

filled with a semiconductor. In the experiment, the sur-

face currents in the guide walls under TE1,O excitation

provide the quantitative observable which permits sepa-

ration of the perturbed and unperturbed parts of the

fields. Thus, the analysis ends with an expression for

these currents. This is then followed by a description of

the experimental scheme which, in addition to providing

verification for the theory, is also another method for

determining the Hall mobility of semiconductors.

PERTURBATION THEORY

Only first-order nondegenerate perturbation is con-

sidered, the extension to higher order ones being similar

in method. We shall assume all field quantities to have

the dependence exp i(Kz — d). Consider the rectangular

m-aveguide completely filled with a semiconductor in a

transverse static magnetic field, as in Fig. 1. In the

absence of the magnetic field, the characteristic waves

are the usual TE and TM modes. Our objective is to

establish an analytic connection between the character-

istic ~vaves in the presence and absence of the perturbing

magnetic field. This connection will appear as additive

terms on the unperturbed TE and TM modes.

In the formalism of previous work [1], [6], the ath
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characteristic nave is specified by the six-vector wave

function

(1)

w-here Ea and Ha are the microm-ave electric and mag-

netic vectors. In this six-vector formalism, the NIax\vell

Equations appear as

($ – K.r)@. c () (2)

where

J3=J30+L

[

UC(J –V, XI
so =

–V:XI qJuI 1
[

o l’ix~
r=

i2x I 1o“
(3)

The symbols V,, 1, and 2 are, respectively, the trans-

verse del operator, the identity dyadic, and the unit

vector along the z-axis. The operator L is the pertur-

bation operator trhich embodies the anisotropy and in

general is

[

me”~c o
L=

o @Po&rt1 (4)

where ~. and ~~ are the electric and magnetic suscepti-

bility dyadics (tensors). In the case of the semiconduc-

tor, ~n is zero as the permeability is assumed to be that

of vacuum. The permittivity CO is complex and it ac-

counts for displacement as well as conduction currents.

Since the anisotropy is induced by the magnetic field,

we use the field intensity as the perturbation parameter

[1] and designate it by the dimensionless variable . . .

Thus, m-e expand

L = ~ vc”L(n)
,,=1

(5)

IZ=l

where K&o and @.t’) are, respectively, the zero-order

eigenvalues (~vave numbers) and eigenvectors (modes)

of LO in the absence of the magnetic field, and K.. and

Fig. 1. Rectangular waveguide with trans-
verse btatic magnetic field B.

@m(’L~ are the nth order perturbations. Our task is to

determine @tif’LJ and Km. which satisfy the recurrerlce

equations,

(& – K.or)@a(O’ = ()

(x, – ~.,r)@atl) = – (L(’) – ~.,r)~a’o’

(SO – Kaor)@a(2) = – (~(’) – K.lr)@a(l)

– (L(?) – K#)@a(()). (8)

We observe that by virtue of the linear independence of

UC, all the O.(”) satisfy the same boundary conditions as

@.(oJ and hence they belong in the domain of J:o. Conse-

quently, every OC(”) maybe represented in a series of f-he

spectral functions of SO.
The first-order field is then given by

O.(l) = ~ (a~l@fl(0) – a–~l~–~l(o)) (9)
@

u-here @_P~O}= CBj(o)( — K@O). Both sets of functions for :!:@

must be included, since + KPO are both eigenval ues of ,SO.

The coefficients a+~l and the first- and second-order

perturbations of tie eigenvalues are determined

methods outlined in [1]. LTsing the notation

where the symmetric scalar product is defined

integral over the cross section of the guide,

xve have

by the

by the

(lo)

(1:1)

(12)

The prime on the summation denotes exclusicm of the

term /3= a. For a given zero-order wave, these quantities

can be calculated once the dyadic coefficients L(n) have

been determined. We shall identify L(’) for the semi-

conductor by considering the conductivity tensor.1

I For convenience we use dyadic and matrix representations inter-
changeably.
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The Conductivity Tensor

With the magnetic field oriented along the x-axis, the

semiconductor is described by the tensorl

(13)

Lo a,, cn,J

where au is the high-frequency conductivity in the ab-

sence of the magnetic field. We assume the field to be

parallel to the (111) or (100) crystallographic axes so

that UP. and U2Z are equal. It is further assumed that the

diagonal element 0-11 is an even function of the static

magnetic field and the off-diagonal element u12 is an odd

function.

To fit the formalism of the theory, the conductivity

needs to be viewed as part of a complex dyadic permit-

tivity. Hence, we define

where eo = e.+ (i/ti)cro is the high-frequency scalar per-

lmittivity in the absence of the magnetic field, and es is

the static perrnittivity of the host crystal which does not

include any polarization contribution from the carriers.

The dyadic (tensor) permittivity is now in the de-

sired form. The first term in (14) is the isotropic part and

the second term accounts for the anisotropy induced by

the magnetic field. Thus, we identify L by comparison

to (4),

‘=’[’-O”O1 :1 (15)

To obtain the dyadic coefficients L(n), w-e expand 6 – UOI

about VCz O, it being understood that 6 is a known func-

tion of the magnetic field. Since Ull and crlz are even and

odd functions of v., we have

where I, and 1. are the special 3 by 3 matrices

‘“=t H]I=E::1
Comparison of (15) and (16) with (5) shows that

(1) ~,, 1~ O
L = iu12 [100

(2) . (,) 1. 0
L = ‘za~l

[100

(17)

(18)

with similar expressions for the higher order coefficients.

Thus, for the semiconductor,

(19)

Expression (19), together with (1 O), shows that the

first-order perturbation of the fields is dependent on the

off-diagonal element of the conductivity tensor. It is

also worth noting that thus far it has not been necessary

to adopt a particular relationship between the conduc-

tivity elements and the transport parameters. The form

of the elements depends on the particular model adopted

for the description of carrier diffusion within the crystal

or plasma. We shall use the Drude-Zener model when

w~e correlate the experimental and theoretical results.

Excitation with TE,, O Modes

We consider now the case of propagation of the TEP, O

mode whose electric vector is parallel to the y-axis. It

must be emphasized that the preceding development is

not applicable to the TEP,g modes, since these are de-

generate with the TNfg, q modes and require treatment

by degenerate perturbation theory [7]. Only one mode

(p, O) is assumed to be propagating, and we wish to

determine the first-order perturbation of this \vave. For

convenience of notation, we use the indexes a = (p, O)

and ~ = (m, ~t).

For the TEa modes, the axial component ,?3$ is

identically zero; and since E!!~z = –E&), then L~~ in (19)

reduces to

(20)

It is evident that only the TIJIB functions are significant

in the first-order perturbation of TEP, Omode. Moreover,

for the TEo,Q modes, whose electric vectors are parallel

to the x-axis and the static field, L~i vanishes and

there is no perturbation.

The TIVId spectral functions are derived from the

normalized scalar functions [8],

4B = [–&JcoK~ok@’Xoy o]-l/2 sin K x sin ~~y, (21)
Xo yo

~vhere the normalization condition is

{cP!~ [ ro~”’) -1

and

“2= (:)’+ (:)’

In terms of these functions, the first-order field may be

expressed now in component form by substitution of

(20) and (10) into (9) and utilization of the “reflection

symmetry” property of the spectral functions. The de-

sired result is
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(22)

In this sum only the terms ~ = (1, 2m+- 1) are nonvanish-

ing. The complete ath quasi-mode, to first-order approxi-

mation, is then given by

J3ere, we have used the fact that Kal, the first-order per-

turbation of the wave number, vanishes for all the

TEP,O modes. This may be readily shown from (19).

The second-order perturbation may be calculated from

(12). For the TEI,O mode, it is

In the experiment to be described in the following

section, the surface currents in the guide walls were

utilized as the quantitative measure of the perturbed

fields. The axial component of the current density is

equal to the x component of the magnetic intensity at

the wall. Thus, from (22), the magnetic intensity com-

ponent is, for a = (1, O),

The exact evaluation of this integral and sum (Appen-

dix, Section A) leads to

where al, o is the arbitrary amplitude of the initial

TEL,O wave. Thus, in the broad walls y = (O, ye), the first-

order perturbation of the axial current density is

For measurement purposes, the ratio of this current to

the unperturbed current J:) is more desirable, since it

is independent of the amplitude. This ratio is given by

It is this ratio

merical values

(1)

Vc.ra z @/Jo(1)y(o)=2K1,0y0u12““a: (28)

that is observed in the experiment. Nu-

for N-type Silicon at room temperature

are computed in the Appendix, Section B.

EXPELLIMENTAL METHOD AND RESULTS

The purpose of the experiment is to determine the

range of validity of the first-order perturbation theory

of the preceding sections. The theory of measurement

is considered first, followed by presentaticm and dis-

cussion of the results.

The measurement of the wall current ratio is accom-

plished by observing the amplitudes of the fields coupled

into auxiliary waveguides through slits. .4 narrow slit,

Fig. 2, is cut in both of the broad walls of the waveguide

containing the semiconductor such that they lie in the

same transverse plane and are perpendicular to the axis

of the guide. Each slit couples the waveguide to a

secondary one, the entire configuration forming a four-

port E-plane junction.

Let J(O) and J(l) be the surface currents due to, the

TEl, O mode and TNT 1,~~+1 spectral functions, respec-

tively. Since the TEI, o currents in the two slits are out

of phase by 180 degrees and the TILIl,J~+l currents are

in phase, the wave amplitudes coupled into one arm of

the junction, say arm A, is

Q., = C(J(’) + J(o)) (29)

and in arm B k

QB = C(J(G _ J(O) (3 o)

~~here c is a coupling coefficient. By forming the phasor

sum and difference of these two signals, the current am-

plitudes are separated. A microwave bridge is emplc)yed

to perform this operation. The two side arms of the slit

coupled junction feed into arms 1 and 2 of the matched

hybrid junction via adjustable attenuators and phase

shifters as shown in Fig. 3.

In the absence of the static magnetic field, only the

TE~,O mode is present in the semiconductor, so that

Qh = – Q. = (j’J(o).

The phase shifter and attenuators are adjusted for a

null in the H-port of the first bridge. The output in the

E-port of that bridge is then 2CJ(”). Some adj ustmerlt of

the attenuators is necessary because perfect symmetry

of the four-arm junction is not possible practical y.

When the magnetic field is applied, the current due

to the TM l,z~+l spectral functions appears and the sig-

nals are then as in (29) and (30). Since the bridge is

adjusted for the sum of Q.i and QB in the Wport, the

output in this arm is

Q., + QD = 2CJC1),
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and in the E-port it is

Measurement of the absolute values of the coupled

power is cumbersome, since it requires a determination

of the slit coupling coefficient. Moreover, because of

magnetoresistance, the effects are obscured since the

amplitudes J(o) with and without the magnetic field are

different. The ratio of J(l) to J(o), however, is inde-

pendent of both the coupling coefficient and the ampli-

tude of J(o).

The ratio is measured by means of a second bridge.

The signals Q~ + Q. and Q~ – Q~ are fed into arms 1’

and 21, respectively, of a second matched hybrid j unc-

tion. In the branch carrying QA – QB, an adjustable pre-

cision attenuator is interposed, while in the branch

with Q~ + QD, a phase shifter is inserted. The E’ arm of

the second junction leads to the null detector, and the

H’ arm is terminated in a matched load.

Let R be the multiplicative factor by which the pre-

cision attenuator reduces the signal amplitude. Then the

detector, being in the E’ arm, picks up the signal

QD = 2RCJC”I – 2CJ(1)

When the phase shifter and the precision attenuator are

so adjusted that the signals arriving at the junction are

of equal amplitude and phase, QD vanishes. Hence, we

have the condition

J(1)

R=——
J(O) “

Fig. 2. The slit-coupled four-port E-plane junction

Fig. 3. A schematic diagram of the double
bridge method of measurement.

Thus, the attenuator readings give the desired current

ratio.

Experimental Results

The current ratio was observedi n 11.1 ohm-cm and

3.1 ohm-cm N-type Silicon which completely filled a

section of standard K-band waveguide. The operating

frequency was 22,235 Gc/s and the temperature 32° C.

The measured wall current ratio as a function of the

applied magnetic field is shown in Fig. 4 for a range zero

to 10 kilogauss. The spread in the data for the 3.1 ohm-

cm is due to reduced power level resulting from extreme

attenuation. It is seen that the data fit remarkably well

on straight lines whose slopes are computed from the

Drude-Zener model in the Appendix, Section B, The

linearity of the data and the close fit to the theoretical

slopes of the lines demonstrate the excellent accuracy

of the first-order perturbation method in the low mag-

netic field region.

Because of severe discontinuity at the semiconductor-

air interface, the perturbation theory of the infinitely

long waveguide leads to a discrepancy in regions near

the interface. This discrepancy disappears at distances,

defined in Fig. 4, which are greater than two guide wave-

lengths in the semiconductor. The observed current

ratio increases with s and asymptotically approaches the

theoretical values.
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CONCLUSION

The perturbation method and equivalent variational

forms [1] appear to be the only comparatively simple

and accurate methods for analysis 0[ transversely mag-

netized plasma and semiconductor in rectangular wave-

guide. The first-order perturbation approximation was

shown to be in excellent agreement with experimental

results. The experimental scheme also provides another

method for measurement of the Hall mobility at room

temperature and low magnetic intensity.

It must be emphasized that the perturbation equa-

tions are valid for all cylindrical waveguides containing

plasma or semiconductor, without regard to direction

of magnetization, provided the material properties are

independent of the axial coordinate. ‘The method can be

used as long as the series (5) for the (operator L is avail-

able. Accuracy of the results and rapidity of convergence

of the perturbation terms can be assured by simply

maintaining the physical parameter J!. within prescribed

bounds.

APPENDIX

A. Evaluation of the Sum (25)

The TMP spectral functions are deiined by

Substitution of this integral in (25) gives

It can be shown that the last sum is

The ratio of ll.XtOIVC to Il..(o) gives (28).

B. Numerical Vallles foy the Current Ratio

~Tsing the semiclassical Drude-Zener Jlodel [9], one

can show that

1 – ‘iOJT

“11= ‘d’ (1 – ;Wr)’ + /.&’B’

where pH is the Hall N!obility, B is the static magnetic

induction, ~ is the energy-independent collision time,

and u,lC = ezr n/m* is the dc conductivity. In the absence

of magnetic field, alz vanishes and all reduces to the

high-frequency conductivity,

where adc
~. = —— .

1 – iwT

$~=aosin:zsin$fly
yo Consider the element alj which may be put in the form

U~ = [— ~WEOKpOk&YOyO]-- 1/2 @o MB
~12 . — —. ———

@02 = CNpoq — kp~.
1 – ‘kJr

1+
[1

P,HB ‘ 2

1 – ioJT
The TEI,O field, a= (1, O), is defined by

This can be expanded as

H:)= 2 xal, okl, o COS— x co

[

~,,~ _ _(!@)3.Vo ~12 =
1 – iwr 1—+. .

(1 – iwT)’ “ “

Th US

r
H:) = –

T

~K1, oa~, o — sin — x
XO %0

m-
E: =

li-

h,uoal, o — sin — x.
Xll Xo

H
Xo I/o TX m7r.l?

x sin — sin — sin ‘!!!? d%dy

o 0 Xo %; Yo

If we take v.= PHB, we have

(1) 00
U12 ‘ ‘— “

1 – ‘kJr

Thus, the current ratio in (28) becomes

In particular, at room temperature where cw<<l, we

have

w#O~dcyO
R=

ZK1,O

/.mB .
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This expression is used to calculate the ratio for

N-type silicon with resistivities 11.1 ohm-cm and 3.1

ohm-cm. In computing ] K] , it is recalled that 60 was de-

fined by

~o=e,+ifl
@

where q = Gq and e, is the permittivity of vacuum. At

room temperature co reduces to ~dc. Thus,

~z = ~2poeG — ~2

leads to

I K I = : [[1– (M.)’]’+ [UCiJLOe,]2}‘“

where 2Tr/hO = u41..Loc, and h.= 2r/k.

The following numerical values were used in the

calculation:

,, = 12 j = 22.235 GC/S

/.LH = 14.50 cm2/vdt-s XO = 0.388 cm

3 = 10 kilogauss A, = 2.14 cm

yO = 0.43 cm.

VOL. MTT-14, NO. 6

The resulting values for

R = 0.288

R = 0.709

JUNE, 1966

the ratio are

for 11.1 ohm-cm

for 3.1 ohm-cm.

Calculations on the basis of a model using the Boltzmann

transport equation [10 ] lead to results which are smaller

than the above values by a factor of 0.88 or 1.1 dB.
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Log+Periodic Transmission. Line Circuits–Part I:
One-Port Circuits
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theoretical study of one-port log-periodic circuits 1. INTRODUCTION
transmission line shunt loaded with qen-circ~t

transmis;on lines is reported. The objective was to determine the ~ HE OBJECTIVES here are to introduce and ex-

Absfracf—A

consisting of a

conditions under which the phase of the input reflection coefficient
1

plain new concepts for transmission line circuits

varies linearly with the logarithm of the frequency. Precise definitions which are constructed according to log-periodic
and general analytical techniques for log-periodic circuits are given. design principles. As with the co;respondi;g log-
Results of extensive numerical calculations are presented to illus-

trate the dependence of the input reflection coefficient on the various
periodic antennas, these circuits provide essentially

design parameters. It was found that phase deviations from linear frequency-independent performance over any desired

on the order of one degree are quite easily achieved. finite bandwidth. Figure 1 illustrates strip line versions

of the four tv~es of circuits to be discussed. The lines in. .
the drawings represent strips which may be inserted
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The authors are with the Hughes Aircraft Company, Ground

between paraIfel ground planes. The one-port circuit of

Systems Group, Fullerton, Calif. Fig. 1 (a), which is the subject of this report, can be de-
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